ELECTRON LINAC UPGRADE FOR THOMX PROJECT

L. Garolfi^{*}, C. Bruni, M. El Khaldi, LAL, Orsay, France N. Faure, A. Perez Delaume, PMB-ALCEN, Peynier, France *garolfi@lal.in2p3.fr

THOMX: A COMPACT HIGH FLUX X-RAYS SOURCE

- Compton back-scattering compact light source machine.
- Collisions between laser pulses and relativistic electron bunches in a optical cavity (Fabry-Perot resonator).
- Intense flux of monochromatic X-rays (10¹² 10¹³ ph/s, 45 90 keV energy) for a 50 / 70 MeV Linac.
- Low energy electron machine which allows the integration in hospitals or museums.

MOTIVATIONS

To accomplish technical specifications at the interaction point, the LINAC has to be carefully designed, especially the photo-injector.

LINAC REQUIREMENTS

Nominal Energy	50 MeV
 Bunch charge 	1 nC
• rms norm. emittance	< 5 π mm mrad
 rms energy spread 	< 0,3 %
 rms bunch length 	< 5 ps

• THOMX accelerator is under construction in the Orsay university campus.

 Average current 	50 nA
Repetition frequency	50 Hz

THE THOMX S-BAND LINAC SCHEME

- The RF Gun design is almost the same as for the Probe Beam Photo-Injector (PBPI) at CLIC Test Facility 3.
- To avoid vacuum constraints with high efficiency is metallic magnesium photocathode has been chosen.
- RF Gun properties: Q-factor = 15000, shunt Impedance = 50 M Ω /m, pulse = 5 MW, 3 µs, E_{peak} = 80 MV/m, energy gain = 5 MeV.

LINAC BEAM DYNAMICS

 $\Phi_{\text{RF gun}} = 0^\circ$, $\Phi_{\text{LIL}} = 0^\circ$ Maximum Mean Momentum Gain (MMMG).

• $\sigma_{x,y} = 0.2 \text{ mm}, \sigma_t = 4 \text{ ps}, B_{\text{peak coils}} = 0.2574T \implies \epsilon_{n,x,y,tot} = 4 \pi \text{ mm mrad}.$

High transverse density e⁻emission strong image charge @ 1 nC.

 $\Phi_{\text{RF gun}} = 0^{\circ}$, $\sigma_{x,y} = 0.2$ mm, $\sigma_{t} = 4$ ps loses more than 40% of total charge.

- $\epsilon_{n,x,y,tot}$ & σ_z approximately constant, dephasing has not effect.
- $\Delta E/E$ vs $\Phi_{RF gun}$ significant variation, dephasing has strong impact.
- $\Delta E/E = 0.2$ % for both cases ($\Phi_{RF gun} = 0^{\circ}$, $\Phi_{RF gun} = -15^{\circ}$).
- $\varepsilon_{n,x,y,tot} > 8 \pi \text{ mm mrad}, \Phi_{\text{RF gun}} = 0^{\circ};$
- $\varepsilon_{n,x,y,tot} \approx 7 \pi \text{ mm mrad}, \Phi_{\text{RF gun}} = -15^{\circ}.$
- $\sigma_z \approx 3.4 \text{ ps}, \Phi_{\text{RF gun}} = 0^\circ; \sigma_z \approx 3.2 \text{ ps}, \Phi_{\text{RF gun}} = -15^\circ.$

Beam parameters at z = 1 m

	Dephasing [deg]			
Parameters	-15	-10	0	+10
x _{,y} [π mm mrad]	7.6	8	8.4	8.5
ΔE/E [%]	0.37	0.6	1.3	2.2
σ _z [ps]	3.1	3	3.1	3.4

• $\sigma_x \approx 3.5 \text{ mm in both cases } (\Phi_{\text{RF qun}} = 0^\circ; \Phi_{\text{RF qun}} = -15^\circ).$

CONCLUSIONS & PROSPECTS

- Preliminary beam dynamics investigation on the ThomX Linac ASTRA tracking code.
- Transverse laser spot $\sigma_{x,y} = 0.2 \text{ mm}$, pulse duration $\sigma_t = 4 \text{ ps}$ \Rightarrow Nominal $\epsilon_{n,x,y,tot} = 4 \pi \text{ mm} \text{ mrad}$ out of the RF gun; at the expense of $\Delta E/E \& \sigma_z$. (*)
- A first set of parameters: $\sigma_{x,y}$, σ_t , $E_{peak RF gun}$, $\langle E_{LIL} \rangle$, $B_{peak coils}$ strengths and RF gun dephasing for energy spread minimization, has been proposed.
- The set $\sigma_{x,y} = 0.6 \text{ mm}$, $\sigma_t = 2 \text{ ps}$, $E_{\text{peak RF gun}} = 80 \text{ MV/m}$, $\langle E_{LIL} \rangle = 14 \text{ MV/m}$, $B_{\text{peak coils}} = 0.2620 \text{ T}$, $\Phi_{\text{RF gun}} = -15^\circ$, $\Phi_{\text{LIL}} = 0^\circ$ respect with $\Phi_{\text{RF gun}} = 0^\circ$, $\Phi_{\text{LIL}} = 0^\circ$ Maximum Mean Momentum Gain (MMMG) allows to obtain $\Delta E/E = 0.2 \%$ with $\varepsilon_{n,x,y,\text{tot}} = 7 \pi$ mm mrad, $\sigma_z = 3 \text{ ps}$, $\sigma_x = 3.5 \text{ mm}$.
- To improve ΔE/E with ε_{n,x,y,tot}, σ_z trade off better position of solenoids & accelerating cavity, several H_{peak coils}, strength, high gradient accelerating section electric field profile (PMB ALCEN LAL section).

* L. Garolfi et al., "BEAM DYNAMICS SIMULATIONS OF THE THOMX LINAC", Proceedings of IPAC2016, Busan, Korea.