Status of the Preparation to the Commissioning of the ThomX Storage Ring

I. Chaikovska*, C. Bruni, S. Chancé, A. Gamelin, H. Monard¹

A. Loulergue²

¹Laboratoire de l'Accélérateur Linéaire, CNRS-IN2P3, Université Paris-Sud XI, Orsay, France ²SOLEIL, Gif-sur-Yvette, France

Accelerator Facility Overview

ThomX is a project to build an accelerator based compact X-ray source in Orsay (France). Performance: maximum flux of 10¹³ **photons per second with energies up to 90 keV.**

- ThomX accelerator complex will be integrated in a new research platform IGLEX (Orsay Campus).
- Refurbishing of the old accelerator building

(IGLOO) and experimental hall along with the infrastructure works were launched in the end of $2015 \Rightarrow$ ready by the end of 2016.

- To reduce the installation work in the accelerator hall, different components will be preinstalled and prealigned in advance.
- The ThomX control system is based on TANGO.
- A MATLAB interface to the TANGO control system, so-called, Matlab Middle Layer (MML) is used to develop the High Level Applications ⇒ accelerator measurements and physics studies.

Friction of 2017. The final assembly and the hardware testing phase is scheduled for the beginning of 2017.

ThomX Storage Ring	

Stability of the electron beam is of great importance for the Compton based X-ray source.

Devenuetor Value Unite

Ring optics

• ThomX SR design is based on a DBA optics with a two-fold symmetry.

Parameter	Value	Units
Beam energy	50 - 70	MeV
Bunch charge	1	nC
Bunch length (rms)	20 - 30	ps
Circumference	18	m
Revolution Frequency	16.7	MHz
Current	16.7	mA
RF frequency / Harmonics	500 / 30	MHz
Momentum compaction	0.0125 – 0.025	
Betatron tunes	3.17 / 1.64	
Natural chromaticity	- 3.3 / -7	
Damping time, tr. / lg.	1 / 0.5	S
Repetition frequency	50	Hz
Beam size at IP (rms)	70	μ m

© Operation and commissioning of the ThomX is a big challenge.

- Very dense integration.
- 8 dipoles, 24 quadrupoles, 12 sextupoles and 12 dualplane corrector magnets integrated in the sextupoles.

Subsystem Status and Installation

Guideline for Commissioning

- Installation and prealignment of the quadrupoles and sextupoles on 8 girders \Rightarrow transportation to the accelerator building.
- Primary beam diagnostics: 12 button BPMs (turn-by-turn data). Synchrotron radiation monitor and the beam loss monitor.
- Longitudinal and transverse feedbacks: 500 MHz ELETTRA-type cavity, 40 kW solid state amplifier ($20\mu s$) + stripline ($5\mu s$).

- The magnets of the SR have been fabricated and the measurements of the multipole errors being finished.
- Field components are well within the tolerances imposed.
- Dipole sorting ⇒ minimisation of the closed orbit distortion.

- A three months commissioning time is foreseen for the ThomX SR.
- Commissioning will start with lower bunch charge (200 pC or less) and lower injection frequency (a few Hz) ⇒ increase of the beam lifetime and decrease the impact of the collective effects.
- Closed orbit is established ⇒ the first-turns analysis (tune, chromaticity and orbit measurements and correction) using the BPM signal.
- RF system ON ⇒ longer beam storage ⇒ more precise information about the beam orbit ⇒ injection optimisation, the optics measurements, beam extraction.
- Beam tuning with the electron-photon Compton scattering.
- According to the present planning, the first X-ray beam delivered to the users is expected in 2018.