

Study and conception of a high finesse Fabry-Perot cavity for the compact X-ray source ThomX

FAVIER Pierre, on behalf of the THOMX collaboration. LAL, Univ Paris-Sud, CNRS/IN2P3, Orsay, France. favier@lal.in2p3.fr

The ThomX project

ThomX is a compact X-ray source, more accessible and cheaper than today's synchrotrons, able to deliver a higher photon flux than the machines currently available in hospitals.

X-rays are produced by a high average power pulsed laser by Compton backscattering off electrons. The installation is planned to start in 2016 and the first lights will be delivered to users in 2017-2018.

Inverse Compton Scattering

E _x	Energy of the X-rays
h $ u$	Energy of one laser photon
γ	Lorentz factor of the electrons beam
θ	Scattering angle
ϕ	Crossing angle

<u>Figure 3</u>: Plot of E_x vs \ominus for two different wavelengths, for 50 MeV electrons and $\phi = 1^{\circ}$. X-rays energy tunable with a simple diaphragm. Peskin, M. E. & Schroeder, D. V. (1995), An Introduction To Quantum

Figure 4: Scheme of the ThomX machine

A. Variola, J. Haissinski, A. Loulergue, F. Zomer, (eds). ThomX Technical Design **Report. 2014**

Storage ring parameters	Values
Electrons bunch energy	50 – 70 MeV
Electrons bunch length	30 ps
Electrons bunch charge	1 nC
Ring circumference	16.8 m
Revolution frequency	16.7 MHz

The optical system

Figure 5: Scheme of the ThomX optical cavity A. Variola, J. Haissinski, A. Loulergue, F. Zomer, (eds). ThomX Technical Design Report. 2014.

Parameters	Typical values	
Laser repetition frequency	33.3 MHz	
Laser wavelength	1031 nm	
Laser pulse temporal length	50 ps rms	
Cavity optical length	8.994 m	
Cavity finesse	30 000	
Cavity waist size	80 µm	
Injected power	100 W	
Circulating power	600 kW	
X-rays flux	10 ¹³ photons/s	

Field Theory (Frontiers in Physics), Westview Press

Performance limitations: intra-cavity thermal effects

Unité: m

Temps: 1

1,9095e-7 Max

1,7731e-7

1.6367e-7

1,5003e-7

1.3639e-7

1,2275e-7

1,0911e-7

9,5473e-8

8,1834e-8

6,8195e-8

5,4556e-8

4,0917e-8

2,7278e-8 1,3639e-8 0 Min

(a)

Heat loads on mirrors

- Reflective surface deformation
- Thermal lensing

Impact

- Laser/cavity coupling deteriorated
- Cavity/electrons coupling deteriorated
- X-rays flux lowered

Simulation have shown

- Crucial choice of the material substrate: **ULE** chosen
- Need careful design of the mirrors' mountings
- Cavity circulating beam size largely affected by surface deformations

The prototype

Figure 6: Simulation of surface deformation with ANSYS for 1 MW circulating power for (a) HERAEUS Suprasil, (b) CORNING ULE. Mirrors were initially flat. The two materials exhibit different deformation amplitudes and patterns.

Figure 8: Apparatus for real-time mirror surface monitoring

ANSYS® Academic Research, Release 15.0

For ULE performances on optical cavities, see H. Carstens et al., "Cavity - Enhanced 196 kW Average - Power Infrared Pulses" Advanced Solid-State Lasers Congress, 2013

Change in curvature depth at one beam radius from the center W. Winkler et al. Phys. Rev. A 44, 7022

	α (10 ⁻⁷ K ⁻¹)	<mark>к</mark> (W/m/K)	δs/δs _{ULE}
Fused Silica	5.5	1.31	57.6
Suprasil	5.1	1.38	50.7
JLE	0.1	1.38	1

wavefront sensor

- Real-time coupling enhancement with adaptive optics
- Real-time finesse measurement with parallel CW laser injection

Figure 7: Prototype vacuum chamber

- Finesse
- Wavefront (phase is also critical)