Lattice Correction using LOCO for the ThomX Storage Ring

I. Chaikovska^{*}, C. Bruni, S. Chancé, A. Variola, J. Zhang¹ A. Loulergue²

¹Laboratoire de l'Accélérateur Linéaire, CNRS-IN2P3, Université Paris-Sud XI, Orsay, France ²SOLEIL, Gif-sur-Yvette, France

Introduction

<u>ThomX is a project to build an accelerator based compact X-ray source in Orsay (France).</u> <u>At present, the ThomX machine is under construction.</u>

Parameter	Value	Units
Beam energy	50 - 70	MeV
Bunch charge	1	nC
Bunch length (rms)	20 - 30	ps
Circumference	18	m
Revolution Frequency	16.7	MHz
Current	16.7	mA
RF frequency / Harmonics	500 / 30	MHz
Momentum compaction	0.0125 – 0.025	
Betatron tunes	3.17 / 1.64	
Natural chromaticity	- 3.3 / -7	
Damping time, tr. / lg.	1 / 0.5	S
Repetition frequency	50	Hz
Beam size at IP (rms)	70	μ m

Broken symmetry of the SR optics (field, calibration and misalignment errors) \Rightarrow Resonant excitation \Rightarrow Strong effect on the beam dynamics and so the X-ray generation in the ring.

 \mathbb{R} To ensure a high flux X-ray production \Rightarrow Linear optics of the ThomX SR has to be measured and controlled.

ThomX Storage Ring

• ThomX SR design is based on a DBA optics with a two-fold symmetry including 8 45° dipoles, 24 quadrupoles and 12 sextupoles.

LOCO data preparation:

Fitting results with LOCO

- All the simulations have been performed by using *MML and AT* softwares with the *LOCO code integrated in Matlab*.
- To perform the linear lattice correction ⇒ LOCO requires
 1) measured ORM 2) measured dispersion 3) BPM noise level.
- ThomX SR: **12 BPMs** (dualplane) and **12 correctors** (dualplane) producing <u>576 data points</u> (600 if dispersion is included).
- The nominal fitting parameters: quadrupole strengths, BPM and corrector gains which gives <u>72 fitting parameters</u>.

LOCO algorithm

LOCO is a program analysing the measured *Orbit Response Matrix (ORM)* and matching the machine model. It is based on the χ^2 function minimization which is given by:

 $\chi^2 = \sum_{i,j} \frac{(M_{ij}^{mod} - M_{ij}^{meas})^2}{\sigma_i^2},$

where M_{ij} are the ORMs and σ_i is the measured BPM noise level.

$$M_{ij} = \frac{\sqrt{\beta_i \beta_j}}{2\sin \pi \nu_x} \cos(|\phi_i - \phi_j| - \pi \nu_x) + \frac{\eta_i \eta_j}{\alpha_c L_0} \text{ (hor.)}$$

Introduced errors to the nominal lattice of the Thom X SR: 1% error of the quadrupole strength, 5% error of the BPMs and correctors gains and BPMs rms noise level at the level of 1 μ m.

ORM fit results:

• Starting with a model having distributed errors, it was possible to establish a nominal lattice of the ThomX SR and find the introduced calibration and field errors:

 $M_{ij} = \frac{\sqrt{\beta_i \beta_j}}{2\sin \pi \nu_z} \cos(|\phi_i - \phi_j| - \pi \nu_z) \text{ (vert.)}$

Conclusions

- ^{ICP} This first study indicates that it is possible to apply the LOCO algorithm to
- restore the ThomX SR lattice symmetry
- get the correct tunes
- predict appropriate settings for the skew quadrupoles to reduce coupling and correct for the vertical dispersion.
- Dedicated routines to measure the ORM according to the limited 20 ms ThomX storage without damping to be develop.
- **8 ghost skew quadrupoles** (two per arc) have been introduced in the sextupoles to investigate a possibility of **linear coupling** and **vertical dispersion** correction.

Introduced error: a tilt of 1 mrad rms applied to all quadrupoles.
Required strength of the skew quadrupole predicted by the LOCO is ~0.1% of the ring quadrupole strength.